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Overview

This report presents methodologies and a series of machine learning generated
models to predict the blood-brain-barrier (BBB) permeability for a collection of drugs
in the Therapeutic Data Commons (TDC) BBB benchmark group challenge, originally
published by Martins et al.. The semi-permeable BBB prevents the delivery of most
drug compounds to the central nervous system (CNS) , limiting the efficacy of
treatments in CNS disorders. The ability to predict which drugs are likely to pass
through the BBB aids in identifying candidate treatments for disorders of the CNS. In
this work, SMILES (Simplified Molecular Input Line Entry System) strings for drugs
were transformed into molecular fingerprints and descriptor features along with
already known important factors such as molecular weight and surface area for use in
machine learning models with high accuracy in identifying a drug's ability to penetrate
the BBB. After generating thousands of candidate features that could potentially be
useful in predictions, different subsets of the most important features are selected for
training models with logistic regression, random forest, SVM, and deep neural network
methods as well as an ensemble of these base learner models. The final ensemble
model is among the best in the field achieving a high accuracy of 94% with a
sensitivity of 95% and specificity of 89% on the Therapeutic Data Commons test set.
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Introduction

The blood-brain barrier serves to protect the central nervous system by tightly regulating the
movement of substances between the blood and brain, thereby maintaining a stable,
controlled environment essential for proper neural function. ™ The blood-brain-barrier (BBB) is
a highly selective semi-permeable feature that serves to protect the central nervous system
(CNS) and presents challenges in the effective delivery of therapeutic compounds for the
treatment of brain and CNS disorders. Recent research indicates that only about 2—6% of
small-molecule drugs can cross the blood—brain barrier (BBB), highlighting the significant
challenge in delivering therapeutics to the central nervous system. @ While the blood-brain
barrier is a highly complex and selective interface, it allows substances to cross through
several distinct pathways that collectively regulate brain access. Small lipophilic molecules
cross the BBB by passive diffusion, essential nutrients such as glucose and amino acids are
transported via specific carrier proteins, larger biomolecules like insulin and transferrin enter
through receptor-mediated transcytosis (RMT), positively charged proteins and peptides may
cross via adsorptive-mediated transcytosis (AMT), small hydrophilic molecules occasionally
pass through paracellular routes under disrupted conditions, while efflux pumps actively
remove many xenobiotics and lipophilic drugs back into the blood, limiting their CNS access
When developing machine learning models to predict blood-brain barrier permeability, it is
essential to account for the distinct physicochemical and transport characteristics of small
versus large compounds, as these groups often utilize fundamentally different mechanisms to
cross the barrier. For modeling passive diffusion across the blood-brain barrier (BBB), a
molecular weight threshold of 500 daltons (Da) is commonly employed to define small
molecules, as compounds exceeding this size are significantly less likely to permeate the BBB
without active or facilitated transport mechanisms.

Building machine learning models to predict passive diffusion across the blood-brain barrier
(BBB) is more feasible due to the availability of extensive publicly accessible datasets with
labeled outcomes for small molecules, such as the BEDB dataset comprising over 7,800
compounds with BBB permeability annotations. * In contrast, data for larger molecules that
rely on active or facilitated transport mechanisms are scarce, less standardized, and often
proprietary, making model training and validation significantly more challenging. Labels in the
B3DB dataset were primarily derived from in vivo rodent studies using methods like logBB,
brain uptake index, and microdialysis, which aim to capture passive diffusion but may
inadvertently reflect active transport mechanisms as well.
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While BBB permeability data from animal models come with limitations due to species-
specific differences in transporters, metabolism, and dosing routes, they still offer valuable,
biologically grounded insights that enable the development of predictive models, especially
for passive diffusion. A study by Gulave et al. (2025) demonstrated that machine learning
models frained on in vivo unbound brain-to-plasma partition coefficient (Kp,uu,BBB),BBB
data can reliably predict human BBB transport when integrated into physiologically-based
pharmacokinetic (PBPK) models, as the resulting simulations closely matched observed
human CNS drug exposure. '

One limitation of machine learning models trained on in vivo data to predict blood—brain
barrier (BBB) permeability is their inability to account for BBB disruption and leaky barrier
states, which can significantly alter drug permeability in ways not reflected in standard
experimental labels. Blood—brain barrier (BBB) disruption refers to the breakdown of the
BBB's selective permeability, allowing normally restricted substances to enter the brain. This
disruption can result from various factors, including inflammation, trauma, disease pathology,
or drug-induced mechanisms that impair endothelial integrity or tight junction function.

Prior work utilizing machine learning models to predict BBB permeability were created by
generating molecular fingerprints as features using software packages such as PaDEL-
Descriptor software " or DeepChem and RDKit ® and produced results with AUC-ROC
ranging from 0.849 " to 0.905 ® and accuracy of 0.798 .

While molecular fingerprints as machine learning features have shown this predictive
success, previous research also suggests that BBB permeability decreases as the molecule's
surface area increases”. BBB permeability also decreases as hydrogen bonds are added to
the structure, whether it is a hydrogen bond donor or hydrogen bond acceptor .
Incorporating these features for drugs in addition to the fingerprints previously shown to be
valuable may provide for higher prediction accuracy.

Although BBB permeability prediction with machine learning and deep learning methods
based on molecular fingerprints have demonstrated accuracy beyond short rule based
criteria, expanding the number of descriptors available as candidate features may improve
accuracy. The workflow approach here expands the candidate features based on insights
from literature reviews, then reduces the final amount of features used in training models
based on importance in feature selection algorithms. In addition to better model performance
on test data, these models use fewer features and are more robust and interpretable.
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Interpretation of key features can improve the understanding of how specific chemical
structures impact BBB permeability, and how molecule design can be improved to enhance
permeability.

Methods

Data with small molecule BBB behavior labels used for training and testing were compiled
from two sources. The Therapeutic Data Commons (TDC) 0 hosts a dataset that is derived
from splits of compounds originally published by Martins et al ™. TDC hosts a leaderboard for
public model entries, and this test set represents a benchmark for direct comparison to
competitive modeling approaches in the field. While the TDC test set is valuable for direct
comparison to other models, increasing the number of compounds in the training set is
critical to improving accuracy. A larger set of compounds for training was obtained from the
B3DB data set . The combination of these datasets after removing duplicates resulted in
9,902 compounds available, plus the 406 compounds already split into the TDC test set.
These available compounds were further split into 7,273 for training, 909 for validation, and
Q10 for a second test set composed of compounds from the B3DB dataset for comparison of
metrics to the TDC test set.

Simplified Molecular Input Line Entry System (SMILES) structures were used to translate a
chemical's three-dimensional structure into a string of symbols that can be processed by
computer software programs. The “Rdkit” python library was used to convert the SMILES
drug structures into numerical features such as Morgan fingerprints , rdk fingerprints,
MACCS fingerprint, and descriptors including 2D and 3D Autocorrelations as well as 3D
Getaway and WHIM descriptors. "™ These binary and non-binary numerical features served
as a proxy for different atomic properties including element connectivity, chemical features,
bond type, atomic mass, and electrotopological state. Well established atomic rules (e.g.
lipinski rules, ghose filter, veber filter efc.) and their attributes were also generated as features.
These processes generated 4,939 candidate features for each drug (Table 1), which were
subsequently fed into feature reduction methods prior to machine learning model generation.
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Feature Generation Method # of Features

Rdk fingerprints 2048 Binary
Morgan fingerprints 2048 Binary
MACCS fingerprints 167 Binary
2D Autocorrelation descriptors 192 Continuous
3D Autocorrelation descriptors 80 Continuous
Rules/filters (6) and its attributes (17) 17 Mix
Getaway 3D descriptors 273 Continuous
WHIM 3D descriptors 114 Continuous
Total 4939 Mix

Table 1. Details of feature generation methods

Following the initial candidate feature generation, feature reduction was performed to reduce
feature multicollinearity prior to feature selection and modeling. Tanimoto similarity was used
to screen binary features such as fingerprints and Pearson's R was used to screen numeric
features. For both metrics one feature was dropped in each pair of features with a correlation
higher than 95% resulting in dropping 19 of the original binary features and 284 of the
original continuous features.

Next chi-square tests were performed for all individual fingerprint features to determine
whether permeability is dependent on the fingerprint. Fingerprints with a p-value less than
0.05 were considered as significant in the first phase. In the second phase, the ratio of
permeable and non-permeable samples were calculated for drug samples containing each
fingerprint. Fingerprints with a permeability of 50% or lower were categorized as significantly
negatively associated fingerprints, and those with 80% or greater permeability were
considered significantly positively associated fingerprints. Based on these results newly
engineered features were created totaling the count of negatively and positively associated
fingerprints for each drug sample.

Following feature generation, reduction and engineering steps described above, features
were transformed using degree 2 poly kernel principal component analysis.
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Due to the class imbalance between the majority of drug samples being permeable (65%)
and a minority of samples being non-permeable (35%), Synthetic Minority Oversampling
Technique (SMOTE) "™ was performed on the training set of data utilizing SYMSMOTE with 12
k-nearest neighbor algorithm to create synthetic data for the minority class until the sample
counts were balanced between permeable and non-permeable observations. This
augmentation of the training data set served as the input to feature selection and model
training phases of the workflow. No augmented samples were generated for the validation or

test sets of data.

Data Inputs
Drug SMILES
Drug A CNIC(=0O)N2C=NC(=C2N=N1)C(=O)N
Drug B C(CN)CNCCSP(=0)(0)O

v

Feature Generation

0 Drug A Drug B

Drug Binary Fingerprints Continuous Descriptors

MACCS1 | MACCS2 | MACCS3 | ... | Molecular Weight| H Bond Donors | H Bond Acceptors
DrugA |0 0 1 194 1 5
DrugB |0 1 0 214 4 6

Non-transformed
Data Set

Transformation 1:
Augment Data for
Class Balance
Transformation 2 :

Scale Data (Zero-Mean,
Unit Variance)

v

Data Cleaning and Feature Engineering

Impute Missing and Infinity values with Feature Mean

\

Feature Engineering: Count of positive and negative associated Binary Fingerprints

v

Multicollinearity: Drop subset of highly correlated Features

v

Data Transformations

Transformation 3 : Transformation 4 :

Scale Data to Zero
Mean and Unit Mean and Unit
Variance Variance

v v

Augment Data
for Class Balance Kernel PCA

Scale Data to Zero

Figure 1: Data Preparation Workflow
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Candidate features were reduced using logistic regression with the least absolute shrinkage
and selection operator penalty to shrink the least important feature’s coefficients to zero thus
eliminating from features selected for use in model training. Ten-fold cross-validations were
performed on a search range for the L1 regularization parameter value, which provided the
highest average accuracy across the folds. The L1 regularization value identified as optimal in
the search was used to frain a final feature selection model that eliminated features with a
coefficient of zero and ranked remaining features in order of importance by the absolute
value of their coefficient. Feature selection lists were generated for the original un-
transformed features as well as the kernel PCA transformed features to evaluate the use of
each feature set on each predictive modeling type.

Four base learner methods of modeling were utilized across all methods of data
transformation sets to generate diverse methods of predictions that serve as inputs to an
ensemble meta-learner in a subsequent phase.

The first base learner method used was a logistic regression. Previous implementation during
feature selection utilized L1 regularization to reduce features. The base learner model
included a further search using ten-fold cross validation to determine the optimal L2
regularization parameter values. This model used the kernel pca transformed features without
oversampling augmentation.

The second base learner method used was a Deep Neural Network. The design of the neural
network was generated using a search on the optimal architecture for a range of two to five
fully connected dense hidden layers. Each hidden dense layer included L2 regularization and
was followed by a dropout layer. The search additionally included a range of neurons used in
each hidden layer, a selection of optimizers, and parameters for learning rate reductions over
the course of training. Each iteration of the architecture search included early stopping
criteria using a holdout subset from the training data to stop model training at the epoch
which represented the highest area under the receiver operating characteristic curve (AUC-
ROC) on the holdout samples. A final model was constructed with the 4 hidden layers
consisting of [67, 70, 84, 88] neurons with [relu, tanh, relu, relu] activation functions,, and
dropout rates of [0.029, 0.122, 0.039, 0.162] and L2 regularization rate of 1.6e-8. The model
used the RMSprop optimizer with an initial learning rate of le-3 which is reduced by a factor
of 0.5 after 3 epochs without improvement in loss. identified in the search and was fully
trained up to the early stopping criteria. This model included kernel pca transformed features
without augmentation at the feature selection stage but with augmentation during fraining.
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The third base learner method used was a random forest. This base learner model included a
search using ten-fold cross-validation to determine the optimal number of estimators, depth,
and minimum samples per split and leaf to reduce the effects of overfitting. This model
included original features without kernel pca transformation and used augmentation for both
the feature selection and model training processes.

The fourth modeling method was a Support Vector Machine (SVM). This base learner model
included a search using ten-fold cross-validation to determine the optimal kernel, degree,
regularization strength, and kernel gamma coefficient which resulted in a final model with a
linear kernel and regularization strength equal to 2. This model included kernel pca
transformed features without augmentation at the feature selection stage but with
augmentation during training.

After training each of the base learner models, the predicted probability of permeability was
calculated on holdout validation samples that were not included in the model's training
samples. These validation sample predictions were subsequently used fo train an ensemble
meta-learner.

The fifth modeling method was an ensemble method where validation sample predictions
from all base learner models were used as feature inputs to a logistic regression meta-learner
ensemble model. All base models were evaluated as meta-learner inputs and permutations of
the base-learner combinations. The combination of base-learners with the highest area
under the receiver operating characteristic curve was selected as the final meta-learner.

Generating predictions on the test set for evaluation was completed in two phases. First, the
probability of permeability for each sample was predicted for each base learner and its
associated selected features. Second, the validation set base learner probabilities were used
as inputs to train a logistic regression meta-learner ensemble model used to make the final
predictions on the test set. BBB permeability classification labels were assigned using a
threshold of greater than 0.5 predicted probability as the drug being permeable for all model
types for the purposes of reporting accuracy, sensitivity and specificity scores.
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While model tuning and training are fime intensive, once the trained models are preserved
molecular descriptor generation and BBB predictions on additional compounds is scalable.
Utilizing cloud compute resources with 16 cores and 128 GB RAM, on average each
compound in a large set of SMILES strings requires 3 seconds, with predictions on a batch of
100,000 compounds completed in 3.5 days.

Performance of the models were evaluated by the following metrics:

Area Under the Receiver Operating Characteristic Curve (AU-ROC): provides a single
scalar value that summarizes the trade-off between the True Positive Rate (TPR) and False
Positive Rate (FPR) across various decision thresholds.

True Positive Rate (TPR) calculated from True Positive (TP) and False Negatives (FN)

TP

TPR = 75+ FN

False Positive Rate (FPR) calculated from False Positives (FP) and True Negatives (TN)

FP

FPR = o5 77N

The ROC curve is a plot of the TPR against the FPR at different probability threshold levels.
The area under this curve (AU-ROC) gives a scalar value that captures the model's ability to
discriminate between the positive and negative classes.

Accuracy: measure of how often the classifier is correct overall
TP + TN
TP + TN + FP + FN

Accuracy =

Sensitivity: measure of all the actual positive cases, how many did the model correctly
detect. A higher sensitivity means the model is better at identifying positive cases

TP
TP + FN

Specificity: measure of all the actual negative cases, how many did the model correctly
identify. A higher specificity indicates that the model is less likely to give false positives

Sensitivity =

TN

SPGCifiCity = m
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The ensemble model obtained the highest balance of Accuracy, Sensitivity, Specificity and
AU-ROC by blending the diverse predictions of the deep neural network, random forest, and
SVM models as base learners. All four machine learning model types generated have AUC-
ROC scores ranging from 0.92-0.96, which placed them at the top of the BBB-Martins
leaderboard as follows as of the date of submission.

Specifically the ensemble model achieves 94.1% accuracy on the TDC test set of 406 unseen
molecules. Expanding beyond with a new rigor of validation on an additional set of 910
unseen molecules split from the B3DB set, the AU-ROC is a similar 0.97 with accuracy of
90.4%. These results observed on two different test sets totalling 1,316 unseen molecules

demonstrates the generalizability of the ensemble model.

Data Preparation

Data

Ensemble
Random Forest BNS55

Logistic Regression 1.705

Random Forest 1.182
Neural Network 1.073
Neural Network 0.687

Logistic Regression -0.131
Random Forest -1.128

Table 2. Model BBB Prediction Performance on TDC test set (406 drugs)

QLanternPharma

94.1%

93.3%
89.7%
92.9%
93.6%
93.6%
88.4%
90.9%

95.4%

95.7%
90.9%
96.6%
95.7%
95.7%
88.7%
98.8%

88.5%
83.3%

84.6%
76.9%
84.6%
84.6%
87.2%
57.7%

0.964
0.961
0.933
0.937
0.965
0.964
0.945
0.904

xX X X X X

xX X X X
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Data Preparation

DEF]

Ensemble 90.4% 93.1% 85.6% 0.969

Random Forest 3.353 89.0% 91.9% 83.8% 0.966 X

Logistic Regression 1.705 89.5% 90.8% 87.8% 0.942 X

Random Forest 1.182 88.5% 94.6% 77.2% 0.956 X X X
Neural Network 1.073 91.0% 92.4% 88.4% 0.962 X X X
Neural Network 0.687 90.3% 93.9% 83.8% 0.963 X X
Logistic Regression -0.131 88.6% 89.0% 87.8% 0.947 X

Random Forest -1.128 85.9% 97.8% 64.0% 0.928 X X

Table 3. Model BBB Prediction Performance on B3DB test set (910 drugs)

Limitations, Challenges and Future Directions

Improvements to Small Molecule Modeling

Efflux pumps at the blood—brain barrier (BBB) are specialized transporter proteins that
actively expel a wide range of drugs and xenobiotics from the brain back into the
bloodstream, serving as a key defense mechanism that limits central nervous system drug
exposure. Efflux pumps are primarily represented by three members of the ATP-binding
cassette (ABC) transporter family—P-glycoprotein (P-gp/ABCB]), breast cancer resistance
protein (BCRP/ABCG2), and several multidrug resistance-associated proteins (MRP1/ABCCI
and MRP4/ABCC4)—that work together to actively export a broad spectrum of drugs and
xenobiotics back into the bloodstream ", Permeability-glycoprotein (P-gp) substrates
consistently show poor brain penetration due to active efflux at the blood—brain barrier
(BBB), whereas P-gp inhibitors can increase CNS drug exposure by blocking this efflux, and
non-substrates/non-inhibitors bypass P-gp entirely, relying solely on passive diffusion ™

<g> LanternPharma predictBBB.ai 11



oredict

While the generated molecular features and current modeling methods could simultaneously
model both the effects of passive diffusion for entry and the efflux pumps counteracting
entry, the relevant features for these two impacts may be different and the weight and
direction of correlations to behaviors may be different. One potential improvement to
modeling small compound behavior at the BBB, could be first modeling inhibitor and
substrate classifications of compounds for the most important ABC transporter proteins such
as PGP and BCRP. These predictions could be used as additional features or as partitions
into separate training sets for a subsequent BBB model.

Modeling Larger Molecules

Larger molecules could cross the BBB by two different mechanisms, adsorptive-mediated
transcytosis (AMT) or receptor-mediated transcytosis (RMT).

Adsorptive-mediated transcytosis enables certain large or charged molecules to cross the
blood—brain barrier by first binding electrostatically to the negatively charged endothelial
surface, followed by uptake via clathrin- or caveolae-mediated vesicular transport and
subsequent release on the brain side ". Adsorptive-mediated transcytosis (AMT) across the
blood—Dbrain barrier is driven by characteristics such as positive surface charge (e.g., high
isoelectric point or zeta potential), molecular size and shape suitable for vesicular uptake, and
peptide/protein sequence features like cationic motifs found in cell-penetrating peptides,
which collectively facilitate electrostatic binding to the endothelial surface and endocytic
transport ", Machine Learning models should be suited to learn from experimental BBB
uptake data of AMT-reliant molecules (e.g., cationic peptides, cell-penetrating peptides).

BBB penetration via receptor-mediated transcytosis requires that therapeutic molecules
engage specific endothelial receptors—such as transferrin or insulin receptors—with
optimized binding affinity that promotes internalization and trafficking across the BBB without
triggering receptor degradation or intracellular retention . Since RMT relies on specific
receptor-ligand interactions, molecular docking simulations to predict binding affinity, pose,
and epitope accessibility could be necessary for understanding receptor engagement and
initiating transcytosis. Since RMT success depends on more than binding—trafficking,
release, receptor recycling, and endosomal sorting, a combination of docking and machine
learning could be the most appropriate approach. However the need for human in the loop
setup and interpretation of docking simulations could cause challenges in scalability for
screening a large list of compounds for the ability fo cross the BBB via RMT
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Due to the lack of publicly available datasets with sufficient labeled compounds with respect
to AMT and RMT behaviorOpen to collaborative efforts, training models are currently a
challenge and may require collaboration with organizations in possession of large private
datasets.

Collaboration Needs for BBB Research

Training effective models for AMT and RMT behavior prediction faces a significant challenge:
the scarcity of publicly available datasets with adequately labeled compounds. To address
this limitation, we are actively seeking collaborative partnerships with organizations that
possess large private datasets relevant to blood-brain barrier research.

Collaboration Goals:

e Partner with pharmaceutical companies, research institutions, and biotech
organizations that have proprietary compound databases with measured results on BBB
behaviors. For compounds that cross the BBB, additional information on the
mechanism by which the compound crosses would allow for separate AMT and RMT
models.

e Collaborative development of models and machine learning approaches that aid in
accurate, scalable modeling of active transport mechanisms

o Create standardized labeling protocols to ensure dataset compatibility across
collaborators.

We welcome discussions with potential partners who
share our commitment to advancing BBB research
through shared resources and expertise.
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